Minimising the number of faces of a class of polytopes

David Yost (Federation University Australia)

01-Dec-2021, 06:00-07:00 (4 years ago)

Abstract: Polytopes are the natural domains of many optimisation problems. We consider a ``higher order" optimisation problem, whose domain is a class of polytopes, asking what is the minimum number of faces (of a given dimension) for this class, and which polytopes are the minimisers. Generally we consider the class of d-dimensional polytopes with V vertices, for fixed V and d. The corresponding maximisation problem was solved decades ago, but serious progress on the minimisation question has only been made in recent years.

optimization and control

Audience: researchers in the topic


Variational Analysis and Optimisation Webinar

Series comments: Register on www.mocao.org/va-webinar/ to receive information about the zoom connection.

Organizers: Hoa Bui*, Matthew Tam*, Minh Dao, Alex Kruger, Vera Roshchina*, Guoyin Li
*contact for this listing

Export talk to